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Abstract. Using ideas of Herbert and XII, analogues of discrete energy levels of electrons 
in quantum optics are introduced into quanmm Vanspon theory. For simple one-dimensional 
devices inelastic scattering wilh optical phonons is modelled by a reservoir. A m t e r  equation 
is derived following the usual procedures in quantum optics. "he hot electron kinetic equation 
of Herben, with corrections. is deduced as a first approximation. Our formalism is applied to a 
simplified tunnelling diode structure. 

1. Introduction 

Boltzmann equations are primarily used for the description of transport in semiconductor 
devices [I]. In this approach it is assumed that an electron suffers many spatially localized 
collisions during the transit through the device, and each collision is temporally separated 
from another. Moreover, the collision rates are regarded as independent of driving fields. 
For sub-micron devices it is expected that these assumptions will begin to break down, 
and quantum effects will be important. Collisions become non-local in space and time 
and strong driving fields can accelerate the electrons during collisions. Herbert [Z], some 
years ago, following Till and Herbert [3] obtained quantum kinetic equations which were 
comparatively simple to analyse and gave reasonable agreement [4] with numerical solutions. 
Optical phonon scattering was treated only in a relaxational approximation. In this paper 
we will obtain a master equation for the single-particle density matrix in a device with a 
driving field and inelastic phonon scattering using the concept of 'trajectories' introduced 
by Herbert. First we will summarize the approach of Herbert to quantum kinetic equations. 

The trajectory method, as developed by Herbert, can be derived from a Schrodinger 
equation [Z] or Boltzmann equation [4] approach. An electron trajectory represents a 
classical energy level accessible to the current flow across the device being modelled. 
A classical trajectory is quantum mechanically represented by a wavepacket. Differential 
equations can be written which include both the effects of scattering between trajectories 
and of reflection and interference from voltage structures. For our purposes it is convenient 
to write the equations for a one-dimensional device as 
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where S,,,,,,,, for example, is the scattering rate from trajectory t r  into trajectory t r  + 1, So 
is the total scattering out of the trajectory tr, and (U) is a quantity called the local velocity. 
qz, and jrr are the average charge and current, respectively, associated with the trajectoxy. 
The local velocity is the ratio of current to charge for the wavepackets representing the 
trajectory. The local velocity does not properly take into account the effects of scattering. 
The master equation approach that we will give deals with this scattering quite rigorously. 

It can be seen immediately that these equations can form a powerful modelling tool. 
They consist of first-order ordinary differential equations, whose stability and numerical 
properties are well established. They can be solved much faster and more easily than 
complete density-matrix, Boltzmann equation or Monte Carlo techniques, while still being 
able to adequately represent electron overshoot [4] and other hot-electron effects in various 
microstructures of interest 151. 

In figure 1 the trajectories (which can be considered as wavepackets around stationary 
energy states of the free particle in a step-like potential) are separated by hw, the energy of 
an optical phonon. In a practical calculation we can consider a finite ladder of trajectories. 
Approximate analytic solutions are then possible within each region [4] and the regions can 
be matched numerically. 
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2. The master equation 

We will consider our system of carriers coupled to a large heat bath of optical phonons with 
a single energy o. The system is one-dimensional with a space-dependent voltage but no 
magnetic field. Coulombic electron-electron interactions are ignored. The electron-phonon 
coupling is taken to be momentum-independent, which is a common approximation to the 
Frohlich Hamiltonian [6]. The Hamiltonian H for the system therefore has the form 

‘H = HS + WB + XSB (3) 

with 

lis = EALdE (4) 

WB mcick ( 5 )  
E 

k 

and 

7 . t ~ ~  = Y C(A~+,A,G t A~-,A,c:). 
1.k 
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The AE are electron annihilation operators for the energy eigenstates of the one-particle 

(7) 
where V ( x )  represents the voltage profile in the device: a and 2 are the single-particle 
momentum and position operators, respectively. The AI are electron annihilation operators 
associated with momentum eigenstates. Ck is the phonon annihilation operator of momentum 
k .  We can characterize the bath by an average particle number ti and a decay constant q so 
that 

(8) 

Hamiltonian E'", 
E('' = fa' + V(P) 

( ~ : ( t ) c ~ , ( t ' ) ) ~  = akk,e-nl'-"l e i ~ - " ) -  n 

(Here the subscript B denotes a bath average.) As usual [7, 81 we will assume that y is 
small and the bath is large so that (8 )  and (9) hold at all times. Consequently it is a good 
approximation in the interaction picture to write the total density matrix as 

P ' W  = P!(t)  d(0) (10) 
where pL(0) is the time-independent bath density matrix. The standard formula for the 
Markovian evaluation [8] of the reduced density matrix pA(r) is  

(t  = 0 is the time that the interaction is switched on.) 
Noting that 

we can rewrite ?tiB as 

'HiB = y /" dre'(Eo-EL)'AI,,{EDIX)(XIEI)dEI 
E d  

x (e'"Ck'(t) + e-'kxC,i'(t)) (13) 
k 

where /EO) and IEl) are eigenstates of 'H(') with eigenvalues Eo and El ,  respectively. From 
(11) we can transform back to the Schrodinger picture through 

Using (12b) and the results of appendix A, 

Eo - ip El +U 1 x (ri + 1) R6(EO - El + w )  - [ [  
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Eo - E1 - U  

ip I1 zS(E0 - El - W )  - 

E o -  E1 - U  

ip I1 zS(E0 - El - W )  - 

+ Hermitian conjugate . (15) I 
This is a many-particle density matrix. In order to derive the trajectory equations of 

Herbert we need to obtain an effective master equation for a single-particle density matrix 
p " ) ( x ,  x ' ) .  To each creation operator we will associate a ket for the analogous one-particle 
state, e.g., 

Ald j  + Ik) (jl (16) 
and so we will define 

p'" = Tr(djAips) Ik) ( j l  
j , k  

(Ik) could be [ x )  or [ E )  here.) 
We have the consistency check that 

Tr(AjAka,,s) = Tr(lj) (klp'l)) 

From equation (17) we derive 

We will write the canonical anticommutation relations as 
( d 1 , d j )  = (jli).  (20) 

AfdjAfAm = dfd,(jl/) - d f A f d j d ,  

[djd;,  d:dm] =d!d,(jll) - dfd; (m[ i ) .  

7 i s  = zd:dmHtml (23) 

We note that 

(21) 

(22) 

and 

Now we will consider the contribution of the Hamiltonian term in (15)-(19). 'Hs is a 
one-body Hamiltonian and so can be written in the form 

1 , m  

The relevant contribution is 

On using (22) we obtain 
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This argument is further developed in appendix A and from (A64 we deduce 

E2 - E3 f 

E2 - E3 - w 

+ Ix )  (xlp")IEz)(Ezlx)(xlE3) (E31 

EZ-E3+@ ip 1 rrG(E2 - E3 + W )  - 

nS(E2 - E3 - W )  - ip ]] + Hermitian conjugate 
E2 - E3 - W 

E2 - ip E3 - w 1 +2nyz S d x [ [ n 8 ( E z - E 3 - o ) -  
Eo.EL.EI.EI 

Ez - E3 + w 
ip I1 nS(Ez - E,  + W )  - 

where 

(EiE3I p(') IxEz) = T~(~sAL~AJAE,AE, )  (27) 

and represents a part of ps which cannot be represented by p( l ) ,  and it is customary 
to ignore it. The derivation given in this section is quite a conventional one for obtaining 
Markov master equations and will be useful for comparisons with the trajectoly method. 

3. The trajectory master equation 

We will give a lieunstic discussion ~ o f ~ t h e ~  trijectoly concept for the sake of clarity. Not 
all the degrees of freedom of the bath space B in the last section will be treated as bath 
variables. B can be decomposed as 

~~~~~~ ~ 

m 
B = @ B .  (28) 

where U. is the space of n-phonon states. For B to be a bath we consider large energies 
for E 

(29) 

Here 8' represents degrees of freedom in U which lead at most to a dressed energy shift 
much less than ho. As a particularly pertinent example different distributions of momentum 
of phonons may lead to the same total energy. Since part of the bath degrees of freedom will 
be incorporated into the system, we will denote the modified system by S'. The modified 
system kets will be written in the form Ix ,  t r )  or IEu, t r )  (depending on the electron basis). 

"=O 

B, % ( ! E  = n w , u )  : U  € E ' } .  
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The overall state space becomes 

H Johnsron and S Sarkar 

( I E B , ~ )  t @D' 

W 0 or (30) 
{IEB, Eo))  @ 13' 

(31) 

l 
and 

EB Eo + 0 tr  

where tr  is the 'trajectory' integer. The convention is that the trajectory of highest electron 
energy under consideration is represented by f r  = 0. We can now write the Hamiltonian 
corresponding to S' and its interaction with B'. The modified system Hamiltonian is 

(32) 'HS. = ( E  S EO + w r r )  IEu, f r )  (Eo. f r ]  . 
€0 lr 

The interaction part of the Hamiltonian is 

x { I E U ,  rr - I )  ( E U  ~ x )  (x~E'u') (E'u', t i l  eixxC~'e-'w' 

+ p u , t r )  ( E U I ~ ) ( X I E ' ~ ' ) ( E ' ~ ' , ~ ~  - 11e-*~~?'eiwrj.  (35) 
The master equation analogous to (1 1) is 

(36) 

From equation (35) it is straightforward to show that the assumption that PA, is diagonal in 
the ' f r '  space is consistent with (36). From now on we will make this assumption, which 
is reasonable since f r  is a bath degree of freedom of L?, and so we can write 

PS' = prr Irr) ( r r l .  (37) 

~ P s * ( f )  d ,  = -JdtTIB'[&(r), [x!+'(f'). P i f ( f ) P k * ] ] d ' .  

,r 

Using appendix B we can deduce that in the Schrodinger representation 
d 
-ptr = -i [%, pr,l + 2 n y  dt 1 dx [ - Ix) (XI E o )  ( E o  Ix) (x I E'o') (E 'u ' l~ ,~ 

Eo €70' 

E - E ' + o J  ip 1 x (/?+l) Z s ( E - E ' + w ) -  

+it a s ( E - E ' - w ) -  

[ [  
[ E - E l - 0  ip I1 

t Ix) b l / % r + ~  IEo) (EoIx)(xlE'd(E'o'l 
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E - ip E’+w 1 n s ( E  - E‘+w) - 

+ Ix) (XI ~ i r - 1  IEo) ( E o l x ) ( x l E ‘ d ( E ’ d  

E - E’ - +Hermitian conjugate 

(38) 

PS = Ptr . (39) 

E - E ’ - w  ip 1 - 

The density matrix for the unmodified system is obtained by tracing over the trajectory and 

fr 

From equation (38) we can deduce that ps satisfies (26). 

4. The trajectory equations 

W e  will now further simplify the evolution equation for p,,. On excluding scattering into 
the trajectory we have 

E - E ’ + o  

E - E ’ - w  

E-E’-OJ 
ip I1 

If the energies contributing to pfr are narrowly centred around E,, then we can 
approximate f by the truncated Taylor series 

(42) 
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This approximation would not be good in a potential structure such as a quantum well 
where the function is not smoothly varying. For the descending staircase structure of 
figure 1.  this is not a problem. 

In order to recover the Herbert-like trajectory equations, it suffices to take f(x, '&) x 
f ( x ,  E f r ) .  On using this approximation (40) can be written as 

S ~ ( X )  = ~ ~ X ~ Y * (  (it + 1) (xlEtr+la)(Etr+lolx)  + ~ ( x I E , ~ - I u ) ( E , , - I u I x ) } .  
r 

(46) 
Owing to the Hemiticity of So, Xes  itself is not Hermitian and so incorporates 

dissipation. We will now consider the other terms in the evolution which represent scattering 
into the trajectory: 

E - E ' + o  
ip 1 ? r 6 ( E - E ' + w ) -  

E - E ' + o  
ip 1 x 6 ( E - E f + ~ ) +  

E - E ' - U  
ip 1 n 6 ( E  - E' - 0) - - 

+ ( x ' ~ E u )  (Eo I ~ v - 1  Ix') (xIE'u')(E'u'Ix') 

Now (xi ptr ] E o )  is strongly peaked at E = E,, and so 
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where 

and 

q r r ( 4  = (XI Pf. I 4  (51) 
where ql, is the trajectory charge density that we introduced earlier. Our treatment will 
be valid provided the electrons are removed quickly enough that the exclusion principle is 
insignificant. 

We have now the essential dynamical equation to derive (1) and (2): 

d a .  
- @ A x )  = --1r,(x) - s , , . , r+l(x)q*r(X) - s , r , f r - l (x)q , r (x)  dr ax 

+s,,+l,t,(x) q , ,+ l (x )  + srr-l , ,r(x) q,.-1(x) (55) 
which coincides with ( 1 )  on identifying S&) with S,,,,+l(x) + Sz,,t,-~(x). 

The evaluation of dj/dt is less straightforward than that of dq/dt. From (43) we know 
that the scattering out of the trajectory can be represented by a non-Hemitian Hamiltonian, 
‘&e. By linearity it is sufficient to consider a term of the form 

P = (E&l (56) 

Xeii IEe8) = E I E e d  (574 

(Eklxeff = (E#‘ (576) 

where 

and 
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(since the density marrix can be written as a sum of such terms). Hence in the absence of 
scattering into the trajectory 

(58) 
and 

H Johnston and S Sarkar 

j ( x )  = f (XI ( B I E ~ ~ )  (EA + I E ~ W )  ( ~ L d a )  Ix )  

d .  
dt 
-](XI = ; ( X I  {k(-iEIEez~)) (E&[ + ..) Ix) 

= -i(E - E’)j(x)  
Similarly from (5 1) 

d 
--q(x) = -i(E - E‘)q(x)  
dr 

By definition the effective velocity (U) is 

Hence, for no inward scattering, 
a aj d 

4 - soq - ( v ) q  = - = -- 
ax ax dr 

(59) 

on using (55). So 
a 
ax (U) - (4 q = (4 [i(E - E’)q - &s] 

= i ( E  - E’)j  - S,j 

(63) 
d .  - - -_ & J - - ~ J .  

In order for (61) to hold for an arbitrary density matrix, it is necessary that (U) is 
approximately independent of E and E‘ within the trajectory wavepacket. 

To find (U) exactly it is necessary to solve the kinetic equations for the adjacent 
trajectories and apply (49) IO determine the wavepacket present. Since the kinetic equations 
depend on (U) and are, in general, interdependent, this is not a trivial operation. 

The simplest semi-classical approximation, appropriate if the correlation lengths are 
small compared to the device structure, is to take (U) = w%? similar to Herbert’s time- 
dependent work [9]. 

The approximation most closely equivalent to Herbert [2] is to take (U) from (61) for 
the effective eigenstates (using appropriate boundary conditions). This allows for reflection 
from the device structure when interference effects are significant and, in this case, the 
suppression of interference caused by inelastic scattering. 

Now 
d d .  - - i l  

&Jrrllnwardr rcattcring - 

-- aqtr+l ng,,(x,x)+qrr+ii(: - -&) g:,(x,x’)+... 
ax X ’ 7  

P 
xlEo)(Eo [ x )  - 

Err - E 

+xmltIi(&-&) x’=x ( x l E , , u ) ( E , , o ~ x ’ ) + . . .  I . 
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The term 

vanishes since it is the total current for the energy subspace E,, which is always zero 
because, for any eigenstate, the conjugate eigenstate always has exactly opposite current. 
Consequently, 

Collecting together terms we have from (63) and (65) 

The term (65) represents a preference for scattered electrons to travel in a particular 
direction due to interference effects. It is unlikely to make a qualitative difference to the 
model for two reasons: firstly, in more general cases there are similar classical terms [4] 
associated with momenhm dependence in the electron-phonon interaction. Secondly, it is a 
principal-part expression caused by the part of (50) which represents non-energy conserving 
interactions that cause the wavepacket of energy states in the target trajectory to broaden: 
that is, it is of similar order to terms already neglected. Nevertheless, it does not add 
greatly to the complexity of the model and so has been retained. It may then be included 
or neglected when solving particular problems as appropriate. The same comments apply 
to the energy shifts (45) which are another very similar term often neglected in traditional 
calculations of this type in quantum optics. 

5. Separating the left-bound and right-bound electron flow 

We will now consider, as a concrete example, an extremely simplified resonant tunnelling 
diode structure such as that shown in figure 2. 

The local velocity for any given energy is determined by calculating the eigenstates. It 
immediately becomes clear that there are two distinct solutions at each energy level, one 
associated with each scattering state. This suggests that it is more appropriate to solve for 
q; and q: than for q and j .  
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Equations (55) and (66) become 

(67) 

(68) 

a 0 = +-"L v% L - soq," -b 
ax 
a O = - - u R  A" R -  soq; +s,R, 

ax 
where 

~ ," ,+S~=Si .~q ,+lS , ,+r .n+qrr~lSV-~. , .  (69) 
We still need to determine Sk and Si. Consider scattering from a single point, 

SF=, = S~.S(X - xo) and sizm = sbj&(X - xo).  
If we consider a small region around xo and ignore electrons entering this region from 

outside we can apply the classical approximation to (66), which for a steady-state solution 
is 

There is a discontinuity in qrr at xo whose magnitude Aq, can be determined by taking 
the coefficient of S(x - X O )  in (70): 

0 = -k(Xo)' Aqn(xo) + Sbirr(x0) . (72) 
Although we have ignored electrons entering the small region from the outside, the 
expression for Aqn(xo) is still valid since for any boundary condition the homogenous 
steady-state solution of qR is continuous. 

Returning to the representation given by (67) and (68) we write 

(73) 

(74) 

a 

a 
0 = - - u R  R - s,q; + s w  - xo) ax 

0 = +,U$& - s,q; + skscx - xo) 

so 

As previously discussed, it is probably a reasonable approximation to set Sbj, = 0 
which simplifies these expressions considerably. 
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The derived steady-state equations are 

a R R -  R R  + -unqn - -So% +si, ax 
where 

for the scattering state travelling to the right, and 

for the scattering state travelling to the left. 

6. Numerical results 

Figure 3 shows the transmission of the junction, without scattering, for energies !?om 2 to 
3 units (as usual, we are working in units in which TI and the electron's effective mass are 
both 1). The downwards slope to the right of the peak is related to the negative differential 
resistance typical of resonant tunnelling diodes. Over a wider energy range, more resonant 
energy peaks can be seen (figure 4). 

Figures 5 and 6 show the transmission over the same energy range for relatively low and 
high scattering rates, respectively. The dots are the points calculated numerically. Figure 7 
shows the three graphs superimposed. 

Specifically, 4nZyZ is 0.2 in figure 5 and 0.8 in figure 6.  E = 0.3 and w = 0.3 in 
both cases. It is important to note that neither these figures nor the voltage profile are 
intended to represent any device currently existing; they were chosen essentially at random 
to demonstrate the general features of this technique. Only two trajectories (the trajectory 
at the base energy and one w higher) were considered; the calculation was done using 
Mathematics [IO], balancing the demands of eliiciency and clarity. In practical calculations, 
much better results could be obtained using more carefully optimized code. 

Figure 3. Transmission versus energy in lhe absence 
of scmterinp. of scattering. 

Figure 4. Transmission versus energy in the absence 

The most critical omission from the calculation is that no attempt was made to 
calculate a self-consistant solution including the mean-field electromagnetic electron- 
electron interaction. 
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Figure 5. Transmission versus energy wirb light 
scattering, 

o,BI A 

0.3 

2 . 2  2 . 4  -2.4. 2 .8  d 

, 17.51 

Figure 6. 
scauering. 

Transmission versus energy with heavy 

Figure 7. Transmission versus energy figures 
superimposed. 

11.51 I 

Figure 8. ut versus position Figure 9. vk versus position. 

Figure 7 shows that in the absence of scattering, a strong interference effect is present. 
This depends on significant numbers of  electrons being reflected between the barriers several 
times without losing coherence; as scattering is increased, lhis becomes impossible and the 
interference pattern is flattened out. 

6.1. Charge distribution 

We choose a single point on figure 5, E = 2.4, and graphed the charge distributions for the 
numerical solution obtained. 

The local velocities u t  and U; are shown in figures 8 and 9, respectively. Here, trajectory 
0 is at the base energy 2.4. The upper trajectory has been labelled -1; U!, and U'+, are 
shown in figures 10 and 11. 

Since the electron energy will in fact be distributed in some wavepacket around the 
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~ i g u r e  10. versus position. 

- 7 . 5  -5 - 2 . 5  0 2 . 5  5 1 . 5  

Figure 12. qt versus position 

-7.5 -5 -2.5 0 2 . 5  5 7 . 5  

Figure 14. q!, versus position. 

Figure 11. uLI versus position. 

Figure 13. qk vmw position. 

L , 5 7.5 

Figure 15. q'., versus position. 

energy of each trajectory, the technique would probably be improved by some form of 
smoothing (particularly outside the resonant region). For the present, unsmoothed results 
are used; we do not think this introduces too great an error with respect to total charge and 
transmission profiles. 

Figures 12-15 show the individual charge distributions obtained. Figure 16 shows the 
charge density on trajectory 0, and figure 17 shows that of trajectory -1. The total charge 
density is shown in figure 18. Again, note that the spikes are probably artifacts of the 
approximation technique and would be strongly damped outside the central region by a 
more careful analysis. 

The boundary conditions used to obtain these results are similar to those used in analysis 
of the Landauer formula. Electrons are assumed to enter the system as plane waves from a 
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1 
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- 7 . 5  -5  -2 .5  0 

Figure 16. 40 versus position 

- 7 . 5  - 5  -2 .5  0 

I 
-7.5 - 5  -1 .5  0 1 . 5  5 7.5 

Figure 17. 9-1 versus position, 

, 5  5 7 . 5  

- 
. 5  5 7 .5  Figure 18. q versus position. 

hypothetical reservoir to the left of the device. The reservoir is assumed to be in thermal 
equilibrium with the optical phonon bath. 
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Appendix A. Details of the evaluation of the integral in (11) 
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It is assumed that qt >> 1 and so 

The contribution from the other term in (AI) is 
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This leads to (15). The one particle reduction of fhis master equation based on (IS), (25), 
(21) and (22) gives 

H Johnston and S Sarkar 

Ez - E3 + w 

Ez - E3 - U  

EZ-E3+0  
ip 1 aS(Ez - E3 + U )  - 

E2 - E, - w 

ip I1 - E3 - W )  - 
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Ez - E3 + w 
ip 1 T c S ( E ~ - E ~ + W ) -  

Ez - E3 - w 

Appendix B. 



3090 H Johnston and S Sarkar 

E' - E"' + o 
ip 1 nS(E' - E"' +U) - 

E' - E'" + w 
xS(E' - E"'+ w) - 

xeiE' [ E o ,  r r )  (Eulx)(xlE'u') 
x (E'u'~x)(x~E"'u''') (E"u"', f r  I e - i p f p i ,  ( t )  

E' - Eln + o 

E' - E" + w 

IEu, ti- - I )  (EoIx)(xIE'o') (E'u', rr le- igrpA,( t )  
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XeiEUr I ~ ! r ~ n  , t r )  ~E"u"~~)(~~E"'u"')(E"'u"', rr + 1 1  
n6(E" - E"' - m) - E,, - E,,, - (B2b) 
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